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ROBUST TESTS OF MEAN VECTOR IN SYMMETRICAL MULTIVARIATE DISTRIBUTIONS

N. Giri and B. K. Sinha

ABSTRACT

= = ' o v -
Let X (Xij) (§l""’xn) s Xi (Xil""’xip) be a nx p random

matrix with probability density function
]-n/z

£,00 = |1 q(tr 2 M x—ew) "(x-e )

where x ¢ ¥ = {x: nxp matrix | rank of n = p}, u = (ul,...,up)' e RP,

= (1,...,1)" n-vector and £ > 0 (positive definite). Assume that

t o

qe Q= {q: [0,o) > [0,#), convex} and n > p so that X'X > 0 with

E: probability one. It is proved that for testing HO: u = 0 versus

!. the alternative le u # 0, the Hotelling's T2—test is locally minimax,
;- d i : = :

- and for testing HO. e) 9 versus the alternative Hl E(l) ¥ 9, the
" appropriate Hotelling's T2—test is both UMPI and locally minimax. 1In
I! = '

i;l the second case 1) (ul,...,upl) » Py < P, and (up1+1,...,up), g are

unknown. The above results generalize those of Giri and Kiefer (Ann.
o Math, Statist., 1964) under the assumption q ~ normal. As a technical

tool, Wijsman's representation theorem is used.

N Keywords and Phrases: Elliptically symmetric distributions, Hotelling's

——————
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ROBUST TESTS OF MEAN VECTOR IN
SYMMERICAL MULTIVARIATE DISTRIBUTIONS

by

N. Giri
Universite de Montreal

and

B.K. Sinha
University of Pittsburgh

0. Introduction and Summary

Let X==(Xij) =(§i,....§;)', §£==(xil....,xip) be a nxp random matrix

with probability density function

£ .00 = 2] 2q(er T xew") (k- o) (L)

where x e X={x: n*p matrix | rank of x=p}, E=(Ul""’up)' € RP,

e=(l,...,1)' n-vector and Z >0 (positive definite pxp). We shall assume that
qeQ=1{q: [0,2) +» [0,),convex}. This is a subclass of probability density
functions which are left O(n) (nx n orthogonal matrices) orthogonally invariant
distributions about SH' and is also a subclass of elliptically svmmetric
distributions about SE' with scale matrix . We shall assume throughout that
n>p so that X'X>0 with probability one (see Giri (1977)).

We shall write for any p-vector b =(bl,...,bp)' = (v ) with

1)°22)

E(l) =(bl""’bp ', 9(2) =(bpj+l’°°"bp)' and Hlil = (b bi)' and for any

1 l’ b
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with A xp, and pzxp2 sub-

pX p matrix A= (ai.) =

i 1

N an’ten’ 1
Aoy 42

matrices respectively, satisfying pl+p2==p. Also we shall write

(

A yeee,d,,
A[.] = 1’ T the ixi left-hand corner submatrix of A. Denote by
1

A, 50054,
(711 Uil
n

n
=1 = -X =X)!
=< %g{i , S {(g(i %) (X0 ".

ol

The assumption of multivariate normality i.e. when

ater T (x-en') ' (x-ep))
znp

= (2I) 2 exp{- %trz-l(x—gg')'(x-sg')} (2)
leads us to derive optimum test procedures for testing problems concerning
u and . However it has been established that (see for example Kariya and
Sinha (1984) and the references contained therein) optimum procedures can
also be derived by replacing the multinormality assumption by one closely re-
lated to it, namely, the class of spherically symmetric distributions in the
case of a random vector X (px1) and the class of elliptically symmetric dis-
tributions in the case of an nXp random matrix X. These optimum procedures in
turn involve the robustness of the distribution of the test statistic under
the null hypothesis (null robustness), the robustness of the distribution of
the test statistic under the alternatives (non-null robustness) and the ro-
bustness of the optimum properties of the test procedures (optimality robust-
ness). We shall call a test robust in any one sense if an optimality property
which the test enjoys can be extended to a class of distributions including

the distribution under which the optimality holds.
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We will consider here the following two testing problems about u for the

~

family of distributions given in (1).

(1) To test Hlo: u=0 against the alternatives Hll: L #0 when T is
unknown.

(2) To test HZO: E(l) =9 against the alternatives HZl: E(l) #9 when
both U(Z) and I are unknown.

Let Gi(p) be the multiplicative group of p*p nonsingular matrices g. The

first problem remains invariant under Gl(p) with the action

(X,85 1,0 ~ (g%, gS8"s 8y, BIg'), g Gy (p).

-~

A maximal invariant in the space (X,S) under GQ(p) is 12 =n§'s_li or equivalently
"

R':=ni'(S-+n§§')-li==T2/(l+T2). A corresponding maximal invariant in the

parametric space of (:,I) is 62==np'2_12. Kariya (1981) has proved that the Hotelling's

N

T2 test which rejects HlO whenever T~ >C or equivalently RZE:C, where C is a

constant depending on the level a of the test, is uniformly most powerful in-

variant (UMPI), whatever q ¢ Q. The distribution of T2 under HlO is the same

as that of Tz under the multivariate normal set-up (Kariya, 1982). Needless
to mention that the multivariate normal .Jdistribution belongs to the family
given in (1l). We shall show in section 1 that the Hotelling's T2 test is lo-

cally minimax in the sense of Giri and Kiefer (1964) for testing HlO against
2
Hll in (1) as " =0. In the multivariate normal setup, this result is proved

‘n Giri and Kiefer (1984).

Let Tl be the group of translations such that t; < Tl translates the last

p, components of each Xi, i=1l,...,n and let G be the multiplicative group of

'Y

p*p nonsingular matrices of the form

e -~ - - . ’.- . X - - P R e e
LT L [N - « L e L T
atas
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8(11) 0

8(21) 8(22)

where g(ll) is the upper left hand corner plxpl submatrix of g. The second

problem remains invariant under the affine group (G’Tl) such that for g= G,

= +
(g,t)X; =gX; +£4,

i=1,...,n.

A maximal invariant under (G,T ) is given by (see Giri (1977))

=2 _ l—
Ry = nXiy (S gy +rX g Kig)) T Xy

= nX' /(1 +nX'

~(l) (ll) (ll) ) )

(l) (ll) X

A corresponding maximal invariant in the parametric space, under the induced

group of transformations, is

2, -1
1 T mrantay 2

For any invariant test under (G,Tl), the second problem reduces to testing
-2 =2

HZO: 51 =0 against the alternatives HZl: 61 > 0., We shall show in section
2 that the test which rejects H20 whenever Eific is UMPI and locally minimax

as 3%-*0 for (1). 1In the multivariate normal setup this test has been proved

to be UMPI and locally minimax as 5%-*0 (Giri and Kiefer (1964)).

1. Locally minimax test for problem 1

The theory of locally minimax tests has been developed in Giri and Kiefer
2
(1964). We refer to this paper for details. For each (9 ,n) in the parametric
~ 2 . . . .
space i, where 3 >0 and n is of arbitrary dimension and its range may depend

2 .
on &7, let p(x; ﬁz,n) be a probability density function on (X,A) with respect

T . R O T
_- .'-'A ‘-\ T PO Nt B .

e .. - S e . R S N T .
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to some O-finite measure., Suppose that we are interested in testing at level
* 2

62==O against the alternatives Hll:

> (0< o < 1) the hypothesis HlO:

where A is a positive constant. For fixed 2, consider the critical region of

the form
3 =lx: U >0} (7)

where U is bounded and positive and has a continuous distribution function

for each (Sz,ﬂ), equicontinuous in (SZ,n) for some 52 <53 and that
p A) = ¢ 8
O,n(A) ! (8)

PX,H(KQ =a+h(A) + g(A,n) (9)

where g(i,n) = o(h(})) uniformly in n with h(}) >0 for A >0 and h(}) =0(1).
Let 50 \ il , denote the a priori probability densitv function on the sets
s A A

b
- 2
{37 =0}, {37 =1} respectively such that

)
Jp(x:l,n)ilk(dn)

=’1-+h(X)[g(A)-+r(A)U(x)] + B(x,}) (10)

fp(x: O’n)iox(d”)

where O"CI <r(h) <, aw for A sufficiently small and g(X) =o(l) and B(x,*) =

2(h(})) uniformly in x. 1If U satisfies (8) and (9) and if for sufficiently

small » there exist iOA and glA satisfying (10) then . is locally minimax for
testing HlO: $2==0 against the alternatives Hilz 52 =1} (specified) as »-0.

It is wellknown that (see for example Giri, Kiefer and Stein (1963),
Giri, Kiefer (1964)) the Hunt-Stein Theorem cannot be applied for the group

G?(p) with p - 2. However this theorem does apply for the smaller group
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GT = {pxp nonsingular lower triangular matrices}

with p >2. Thus for each 62, there is a level o test which is invariant under
GT (see Lehmann (1959), p. 225) and which minimizes among all level o tests,

the minimum power under Hil. In the place of R2 under Gl(p), we obtain a

2

p-dimensional vector §==(Rl,..

2
.,Rp)' as a maximal invariant under GT and

R is defined by

i
= 2 =, - - 1=
R,=n X S;..,+tn X . . X!, Xe. 11
R R FA R CEV R FSE S LREY o
i=1,...,p
2 B o2_ 2
with R15:0 and E Ri = R’. A corresponding maximal invariant in the parametric
1
N < 2
space under the induced group is 9 = (02,...,Op)' and bi,...,fi are given by
2
YA = ' Z— { = 2
] Sj ng[i] [ii]B[i]’ i=1l,...,p (12)
L2 P 2_.2 . o .
with éi_iO, Loy =o. The nuisance parameter in this reduced setup is
1
N 2
t_l o)
N= (5 seees ' = (,.e0,n)" (13)
~ 62 5 1 o]

Since the distribution of R depends on & only through § we may put Z=1 and

redefine vn » = o= (,1,...,5p)'. Using Stein's theorem (1956) or Wijsman's

(@2}

representation theorem (1967), the ratio of the probability densities of R,

under H'. and under H

1 Lo® is given by (for g<G.)

T
n-i

= b 22
pl(gx,gsg (g, ) dg
CT -~ 1 11

ratio= - (14

n-1

[ - P 2 72
P,(8x,8s8")(g,.) ~ dg
G (O 11

T 1

where

A T P I AR
- -




(Y ]=]

- I3 — - 2
pl(x,s) = |s]“ q(tr{(s+nxx") —2n§'u+6 )

(Y]

Po(Xss) = |s] q(tr((s+nxx')).

Let A be a matrix belonging to GT such that A(s+nxx')A' = Ip- Then

A'A==(s+n§§')-1'=s-l-ns—l§§'s—1(l-+n§'s-l§)~l, so that nx'A'Ax =
p
-, ~1=- -, -1-.-1 ¥ 2 2 . - - '
' . ' = = ! =T, WE
pxts x(roxls T = Ry = R Simee Apgy Sy XA T
- - )
obtain nx! . A' . .A .. .X.., = )R, so that
STl
=T o =
vnAi(— (Rl,...,RP)' =y (15)
i 1
where y'. . v, ., = JR;. Writing gA = = g we get from (14)
“[E)=0i) 13
p n-i
2 2 2
JG q(er(gg' -2 u'gy +37)) T (g;;) ~ dg
ratio = 1 _i=] (16)
( P,
. 2,2
| aler(gg') M(gi,) ° dg
‘GT 1
where . = (.51,...,:-p)'.
Let us assume that q is thrice continuously differentiable. Writing
. 1
q(l)(x) = Q_g we obtain
i
dx
' o 2
q(tr(gg' -2 «'gy + §7))
- ' (1) ' o
= q(tr gg') +q " (tr gg')(-2tr(a'gy)+\)
(2) n
+ 513_-— (tr gg") (=2 tr (H'gy)+)) " (17)
+2 P @ 20 (L)’

where Z =trgg' + (1-u) (=2 tr (1"gy)+)\), 0<n<1l. Let

n-i
P2 T2
D = qtr gg") H(g,i) dg. (18)
Gy 1t




n=-i
. p —
Since the measures q(l)(tr gg') H(gii) 2 dg, i=
1

the change of sign of g to -g, we get

. n_-_i
2
(tr gg") T (g5) > dg=0
i=1

f tr(a'gy)a
G

T

and

n-i
( . p ==
2
J g,,ggkq(l)(tr gg") 1T (g..) 2 dg=0
G 1] =1 11
T i

if i#2, j#k.

Thus from (16)-(20) we get
n-i

) A P2 2
ratio= 1-+B J q ' (tr gg )H(g.i) dg
G )

T .
n-i

n-1i

S 2 P 2 T2

+ 355 f q( )(tr gg")I(g, ;) 2 dg
Gy 1

f NE
J (-2 tru gy-+)) (z)H(g )

1
6D 1

The first integral in (21) is a finite constant Bl.

integral in (21) we first note that

tr a'gy = ) T [ ] 8, g +4.g..1.
FRE AT IRt RS
From (20) and (22) the second integral can be tvritten as
f 2 2 2 22, (2) 2 E%i
JG (Q ry T oieyy + 8ga " (er gg )g\g ) dg.

i i>j

T

p
f (tr g'gx)zq(z)(tr gg')n(gfi) 2 d
1

2

n-1i

dg.

1,2,3 are invariant under

(19)

(20)

(21)

To evaluate the second

(22)

(23)




Let us now evaluate the integral
f p L=
2 (2 2,2
1= g2a@ (e ggEZ) 2 as. (24)
jg_ i ] it
T

Define

L = tr(gg"),
= g2 /L, i=1,2
ei—gii ,l—l, yeeesP 3

2 .
Cp+i  Bisl,i/L tT

2
e - . =g. + 9 i=2,-o-,p_2
p+p-1+i i+2,1i (25)

l,...,p-l;

e = g° /L
p(p+tl) ~ &p1'™"
2

Write

@ '
K = JG q "’ (tr gg')dg

f

)

is a spherical density »f gij's, L and e==(el,...,e

T
E (Eéi) (26)
1 2)

L a‘? (Lyds.

QKZ)(tr g8")

K

Since )!

p(p+l)
1 1 2
are independent and e obeys a Dirichlet distribution D(i,...,—). From

Kariya and Eaton (1977) the probability density function of e is given by

plp+l) _
-1

p(p+l)
1
7-1 -
(ei) (1 { ei)

r@Lptl),
2 2

ple) = i

’

Now using (24)-(26) we get

N
I ==E(I (e,) " e, )
K j#i i

_ N, (n-i+l) (27)

=~
XS]
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10
where
p n=1
= E(ll(e,) )
1
Similarly
f p n-i
2 2
| s @) (er ggisl)) 2 ag
c. ™ 1
T
P n-i NM
= E(ek i ei 2 ) = 7K with k > p. (28)

1
It may be verified that the third and the fourth integrals in (21) are both

of the order 0(32) uniformly in y and n. Hence we can write
MN
ratio= 1-+- B, +% ? ( ) n + (n-J+1)ﬂ ))
14 i>]j
+ B(y,n,1) (29)
where B(y,n,A) = o(A) uniformly in y and n. Thus, from (29), the equation

(10) is satisfied by letting EOA give measure one to the single point n = 0

*
while €1A give measure one to the single point N =n = (nl,...,np)' whose

.

*
jth coordinate nj satisfies
-1 . -1 -1 .
= (n-j) " (n-j+1) "p "n(n-p), j=1,...,p
so that

*
) n + (a-j+1)n 2 = B, (30)
15 i o

The equation (8) follows from the null robustness of the distribution of T2

(Kariya (1982)). To show (9) we proceed as follows.

~~~~~
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For ge GQ, we can write using Wijsman's theorem

n-p

2
v _ ' '
£ e2[nr) f q(tr(gg' - 20'gy+A) |gg'| © dg
T2 11 G,
5 = (31)
sz(t lHlO) ; n;g
| ater sg')|gg'| © dg
)
To evaluate (31) we use the following results.
(1) Given x = (xl,...,xp)' there exists an 0¢O0(p), the group of pxp
]
F orthogonal matrices,such that
0x = (vx'x , 0,...,0)". (32)
(ii) We can decompose G2 = GT x0(p). Denote
n-p n—-i
J1 2 P 2 72
u(dg) = lgg'| © dg, £(dn) = M(hl,) “ dn (33)
1
for h« GT and T(d0) the invariant measure on O(p). Then for g« GQ,
u(dg) = £ (dh) 1(d0).
(1) | er(a0B0)t(do) = trAB
0(p)
. 0 if k is odd
k
and | (tr 0A) T(d0) = i )
trA'A
10 (p) rp if k=2. (34)
Using the above results we can rewrite (31) as
f p , =i
1+ % J Y e v) men2) ? an
ii
G 1
T .
2 p n-1
2) 2
+ S5 b2 P (er bh")N(h2) 2 dh + B(y,n,\) (3.5)
2 11 ii -
pD G 1
T
= 142K + crd) + B(y.0,0)
po e e e A e T e L T
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where B(y,n,A) = o(}) uniformly in y and n and k,c are positive constants
2
(using (27) and (28)). Hence for T ~test, with b>0,

) = o
Px,n( ) o+ bA + g(A,n)

with g(k,g) = o(bA).

Hence we get the following theorem.

Theorem 1. For testing H  against H! Hotelling's T2 test is locally mini-

10 11°

max as > >0 for the family of distributions given in (1).

:‘f 2. UMP invariant and locally minimax test for problem 2
= v

' . - [~1(D) _ - . - [~1(1)
. Write §i (v ], i=1,...,n0 and X (Xl XZ) with Xl s
b
: 1) X

i,= §1(2) with X,: noxp X,: nXp,. Now writing X = 7 ==l

2 1 1’ "2 2 22,1 (22)" (21) (11)7(12)’

NED
- r

e = (e(l)’ ~(2)) , We can write
v e -n/2 -n/2
ExCO = 12y 17 12,
5{' e q(er{Z (x,= ) (x, - Y+I -1 u'ul)
c (ll) ~1 ~(l) (l) ~1 ~(l) (l) 22.1
2
o where
" = _ )
o =% - (e ()Y (1?2(11) a2
' The marginal probability density function of Xl is given by

‘- -n/2- -~1

) f = T o T X, -
: x %) T TR F gy gy me gy ey ) 37




- 0= ¢ B F ¥ .7 -'.'c-r-'«"("-"'r“'*“‘:“'.“.‘-;r-g“-:wv?s—':"',—v-—v‘_w—v.wj—-‘—v—;vyvir-;-_rv-ry-—,—,-v-y_g.,rjr—_v—_r;-;-:t‘

13
. _ «-1/2 ;
where, taking w = 222.lu’ t
1 1 !
q{tr z(ll)V) = J pznq(tr(z(ll)v-+ww5)dw. :
R )
- 1
The assumed convexity of q implies convexity of q. i
To find the ratio of the probability densities of the maximal invariant :

Rl with respect to the group (G,Tl) we can without any loss of generality

consider only the multiplicative group Gz(pl)which transforms each

oy
X T8y B Gy
- Using Stein's theorem or the Wijsman's representation theorem we obtain

B for ge Gz(pl), the ratio of probability densities of ﬁi under H21 and

= HZO as

n—pl

£§(Eg(§g'-23'gx +Si)|gg'l 2 g
(P

ratio= TP (38)

¢
Jﬁ(tr gg) eg'| 2 dg
Gy (Py

LY RN

where p = (Ol,... NURD RN X=(rl,...,r )' satisfying p'p = Si, X'X=;]2_‘

P1 P1
Using (32) we can write the numerator of (38) as :
n=p

fﬁ(tr(gg'-zg*'gx* + 3i)lgg'l 2 4g = H(r) (say)
n-p
1

with g* = (31,0,...,0)', y* = (;1,0,...,0)'. Since fgg'l 2 dg is invariant

under the sign change, g*-g = he’CQ(pl) we conclude that
n=p
1

2 4g = HC-T ). (39)

- f. -
H(r)) = Jq(tr(gg'—zg*'g(ﬁx*)+éi)lgg'|
GQ(Pl)

Hence H(;l) = WH(;l) + (l-i)H(—;l). Since q is convex by assumption, for
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- <a <11,

H(z)) > H((20-1)T ). (40)

From (39)-(40), we conclude that H(;l) is a monotonically increasing funciton

of ;2. Now applying Neyman-Pearson lemma we obtain the following theorem.

1
. <2 . , -2
Theorem 2, For testing HZO: 61.=O against the alternative H21: 01 > 0 the
test which rejects H20 whenever ﬁi > ¢ is UMPI with respect to the group

(G’Tl) for the family of distributions given in (1).

Moreover, we can prove in an analogous way, using the results of section 1,

the following theorem. The details are omitted.

'§2=,k (specified) > 0 Hotelling's

Theorem 3. For testing H20 against HZl: 1
-1
T2 test which rejects HZO whenever Rz > ¢ is locally minimax as » -+ 0.
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